# JEE MAIN + ADVANCED 

# MATHEMATICS 

# TOPIC NAME <br> ELLIPSE 

(PRACTICE SHEET)

## LEVEL- 1

## Question based on <br> Equation and properties of the ellipse

Q. 1 The equation to the ellipse (referred to its axes as the axes of $x$ and $y$ respectively) whose foci are $( \pm 2,0)$ and eccentricity $1 / 2$, is-
(A) $\frac{x^{2}}{12}+\frac{y^{2}}{16}=1$
(B) $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
(C) $\frac{x^{2}}{16}+\frac{y^{2}}{8}=1$
(D) None of these
Q. 2 The eccentricity of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is-
(A) $1 / 3$
(B) $2 / 3$
(C) $3 / 4$
(D) None of these
Q. 3 If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is-
(A) $3 / 2$
(B) $\sqrt{3} / 2$
(C) $2 / 3$
(D) $\sqrt{2} / 3$
Q. 4 If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse is-
(A) $1 / 2$
(B) $2 / 3$
(C) $1 / \sqrt{3}$
(D) $4 / 5$
Q. 5 The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents an ellipse if-
(A) $\Delta=0, h^{2}<a b$
(B) $\Delta \neq 0, h^{2}<a b$
(C) $\Delta \neq 0, h^{2}>a b$
(D) $\Delta \neq 0, h^{2}=a b$
Q. 6 Equation of the ellipse whose focus is (6, 7) directrix is $x+y+2=0$ and $e=1 / \sqrt{3}$ is-
(A) $5 x^{2}+2 x y+5 y^{2}-76 x-88 y+506=0$
(B) $5 \mathrm{x}^{2}-2 \mathrm{xy}+5 \mathrm{y}^{2}-76 \mathrm{x}-88 \mathrm{y}+506=0$
(C) $5 x^{2}-2 x y+5 y^{2}+76 x+88 y-506=0$
(D) None of these
Q. 7 The eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis is-
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{\frac{2}{3}}$
(C) $\frac{\sqrt{3}}{2}$
(D) None of these
Q. 8 The equation of the ellipse whose centre is at origin and which passes through the points $(-3,1)$ and $(2,-2)$ is-
(A) $5 x^{2}+3 y^{2}=32$
(B) $3 x^{2}+5 y^{2}=32$
(C) $5 x^{2}-3 y^{2}=32$
(D) $3 x^{2}+5 y^{2}+32=0$
Q. 9 The equation of the ellipse (referred to its axes as the axes of $x$ and $y$ respectively) which passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$, is-
(A) $3 x^{2}+6 y^{2}=33$
(B) $5 x^{2}+3 y^{2}=48$
(C) $3 x^{2}+5 y^{2}-32=0$
(D) None of these
Q. 10 Latus rectum of ellipse
$4 \mathrm{x}^{2}+9 \mathrm{y}^{2}-8 \mathrm{x}-36 \mathrm{y}+4=0$ is-
(A) $8 / 3$
(B) $4 / 3$
(C) $\frac{\sqrt{5}}{3}$
(D) $16 / 3$
Q. 11 The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is-
(A) $x^{2}+2 y^{2}=100$
(B) $x^{2}+\sqrt{2} y^{2}=10$
(C) $x^{2}-2 y^{2}=100$
(D) None of these
Q. 12 If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is-
(A) $1 / 2$
(B) $1 / \sqrt{2}$
(C) $1 / 3$
(D) $1 / \sqrt{3}$
Q. 13 The equation $2 x^{2}+3 y^{2}=30$ represents-
(A) A circle
(B) An ellipse
(C) A hyperbola
(D) A parabola
Q. 14 The equation of the ellipse whose centre is $(2,-3)$, one of the foci is $(3,-3)$ and the corresponding vertex is $(4,-3)$ is-
(A) $\frac{(x-2)^{2}}{3}+\frac{(y+3)^{2}}{4}=1$
(B) $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1$
(C) $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
(D) None of these
(D) None of these
Q. 22 The foci of the ellipse, $25(x+1)^{2}+9(y+2)^{2}=225$, are at-
(A) $(-1,2)$ and $(-1,-6)$
(B) $(-2,1)$ and $(-2,6)$
(C) $(-1,-2)$ and $(-2,-1)$
(D) $(-1,-2)$ and $(-1,-6)$
Q. 23 The eccentricity of the ellipse represented by the equation $25 x^{2}+16 y^{2}-150 x-175=0$ is -
(A) $2 / 5$
(B) $3 / 5$
(C) $4 / 5$
(D) None of these
Q. 24 The equation of the ellipse whose foci are $( \pm 5,0)$ and one of its directrix is $5 x=36$, is -
(A) $\frac{\mathrm{x}^{2}}{36}+\frac{\mathrm{y}^{2}}{11}=1$
(B) $\frac{x^{2}}{6}+\frac{y^{2}}{\sqrt{11}}=1$
(C) $\frac{x^{2}}{6}+\frac{y^{2}}{11}=1$
(D) None of these
Q. 25 If S and $\mathrm{S}^{\prime}$ are two foci of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a<b)$ and $P\left(x_{1}, y_{1}\right)$ a point on it, then $\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}$ is equal to-
(A) 2 a
(B) $2 b$
(C) $a+e x_{1}$
(D) $\mathrm{b}+\mathrm{ey}_{1}$
Q. 26 Let $P$ be a variable point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ with foci $S$ and $S^{\prime}$. If $A$ be the area of triangle PSS $^{\prime}$, then maximum value of A is-
(A) 12 sq. units
(B) 24 sq. units
(C) 36 sq. units
(D) 48 sq. units

## Question based on <br> Paramatric equation

Q. 27 The parametric representation of a point on the ellipse whose foci are $(-1,0)$ and $(7,0)$ and eccentricity $1 / 2$ is-
(A) $(3+8 \cos \theta, 4 \sqrt{3} \sin \theta)$
(B) $(8 \cos \theta, 4 \sqrt{3} \sin \theta)$
(C) $(3+4 \sqrt{3} \cos \theta, 8 \sin \theta)$
(D) None of these

## Question <br> based on

## Ellipse and a point, Ellipse and a line

Q. 28 The position of the point (4,-3) with respect to the ellipse $2 x^{2}+5 y^{2}=20$ is-
(A) outside the ellipse
(B) on the ellipse
(C) on the major axis
(D) None of these
Q. 29 If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then its eccentric angle $\theta$ is equal to-
(A) 0
(B) $90^{\circ}$
(C) $45^{\circ}$
(D) $60^{\circ}$
Q. 30 Find the equation of the tangent to the ellipse $x^{2}+2 y^{2}=4$ at the points where ordinate is 1 .
(A) $x+\sqrt{2} y-2 \sqrt{2}=0 \& x-\sqrt{2} y+2 \sqrt{2}=0$
(B) $x-\sqrt{2} y-2 \sqrt{2}=0 \& x-\sqrt{2} y+2 \sqrt{2}=0$
(C) $x+\sqrt{2} y+2 \sqrt{2}=0 \& x+\sqrt{2} y+2 \sqrt{2}=0$
(D) None of these
Q. 31 Find the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which make equal intercepts on the axes.
(A) $y=x \pm \sqrt{a^{2}+b^{2}} \quad \& y=-x \pm \sqrt{a^{2}+b^{2}}$
(B) $y=x+\sqrt{a^{2}+b^{2}} \& y=-x \pm \sqrt{a^{2}+b^{2}}$
(C) $y=x+\sqrt{a^{2}+b^{2}} \& y=x \pm \sqrt{a^{2}+b^{2}}$
(D) None of these
Q. 32 Find the equations of tangents to the ellipse $9 x^{2}+16 y^{2}=144$ which pass through the point ( 2,3 ).
(A) $y=3$ and $y=-x+5$
(B) $y=5$ and $y=-x+3$
(C) $y=3$ and $y=x-5$
(D) None of these
Q. 33 If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intercepts lengths h and k on the axes, then-
(A) $\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}=1$
(B) $\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}=2$
(C) $\frac{\mathrm{a}^{2}}{\mathrm{~h}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{k}^{2}}=1$
(D) $\frac{\mathrm{a}^{2}}{\mathrm{~h}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{k}^{2}}=2$
Q. 34 The equation of the tangent at the point $(1 / 4,1 / 4)$ of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{12}=1$, is-
(A) $3 x+y=48$
(B) $3 x+y=3$
(C) $3 x+y=16$
(D) None of these
Q. 35 The line $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ will be a tangent to the conic $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if-
(A) $\mathrm{p}^{2}=\mathrm{a}^{2} \sin ^{2} \alpha+\mathrm{b}^{2} \cos ^{2} \alpha$
(B) $\mathrm{p}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
(C) $\mathrm{p}^{2}=\mathrm{b}^{2} \sin ^{2} \alpha+\mathrm{a}^{2} \cos ^{2} \alpha$
(D) None of these
Q. 36 If $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is tangent on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, then the value of $c$ is-
(A) 0
(B) $3 / \mathrm{m}$
(C) $\pm \sqrt{9 \mathrm{~m}^{2}+4}$
(D) $\pm 3 \sqrt{1+\mathrm{m}^{2}}$
Q. 37 The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $y=m x+c$ intersect in real points only if-
(A) $a^{2} \mathrm{~m}^{2}<\mathrm{c}^{2}-\mathrm{b}^{2}$
(B) $a^{2} m^{2}>c^{2}-b^{2}$
(C) $a^{2} m^{2} \geq c^{2}-b^{2}$
(D) $\mathrm{c} \geq \mathrm{b}$
Q. 38 If the straight line $\mathrm{y}=4 \mathrm{x}+\mathrm{c}$ is a tangent to the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$, then c will be equal to-
(A) $\pm 4$
(B) $\pm 6$
(C) $\pm 1$
(D) None of these
Q. 39 The equation of the tangents to the ellipse $4 x^{2}+3 y^{2}=5$ which are parallel to the line $y=3 x+7$ are
(A) $y=3 x \pm \sqrt{\frac{155}{3}}$
(B) $y=3 x \pm \sqrt{\frac{155}{12}}$
(C) $y=3 x \pm \sqrt{\frac{95}{12}}$
(D) None of these
Q. 40 The equation of tangent to the ellipse $x^{2}+3 y^{2}=3$ which is $\perp^{r}$ to line $4 y=x-5$ is-
(A) $4 x+y+7=0$
(B) $4 x+y-7=0$
(C) $4 x+y-3=0$
(D) None of these

## LEVEL- 2

Q. 1 The area of quadrilateral formed by tangents at the ends of latus-rectum of the ellipse $x^{2}+2 y^{2}=2$ is-
(A) $\frac{8}{\sqrt{2}}$
(B) $8 \sqrt{2}$
(C) 8
(D) None of these
Q. 2 The equation $\frac{\mathrm{x}^{2}}{10-\mathrm{a}}+\frac{\mathrm{y}^{2}}{4-\mathrm{a}}=1$ represents an ellipse if -
(A) $\mathrm{a}<4$
(B) $\mathrm{a}>4$
(C) $4<$ a $<10$
(D) $a>10$
Q. 3 If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of x and y respectively) is k and the distance between its foci is 2 h , then its equation is-
(A) $\frac{\mathrm{x}^{2}}{\mathrm{k}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~h}^{2}}=1$
(B) $\frac{\mathrm{x}^{2}}{\mathrm{k}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{k}^{2}-\mathrm{h}^{2}}=1$
(C) $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}-k^{2}}=1$
(D) $\frac{\mathrm{x}^{2}}{\mathrm{k}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{k}^{2}+\mathrm{h}^{2}}=1$
Q. 4 The locus of the mid-points of the portion of the tangents to the ellipse intercepted between the axes
is -
(A) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$
(B) $\frac{\mathrm{a}^{2}}{\mathrm{x}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{y}^{2}}=4$
(C) $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=4$
(D) None of these
Q. 5 If S and T are foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $B$ is an end of the minor axis. If STB is an equilateral triangle the eccentricity of ellipse is-
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{\sqrt{3}}{2}$
Q. 6 The sum of the squares of the perpendicular on any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from two points on the minor axis each distance $\sqrt{a^{2}-b^{2}}$ from the centre is -
(A) $a^{2}$
(B) $b^{2}$
(C) $2 a^{2}$
(D) $2 b^{2}$
Q. 7 If $(5,12)$ and $(24,7)$ are the focii of an ellipse passing through origin, then the eccentricity of ellipse is -
(A) $\frac{\sqrt{386}}{38}$
(B) $\frac{\sqrt{386}}{12}$
(C) $\frac{\sqrt{386}}{13}$
(D) $\frac{\sqrt{386}}{25}$
Q. 8 The common tangent of $x^{2}+y^{2}=4$ and $2 x^{2}+y^{2}=2$ is-
(A) $x+y+4=0$
(B) $x-y+7=0$
(C) $2 x+3 y+8=0$
(D) None
Q. 9 The eccentric angles of the extremities of latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are given by-
(A) $\tan ^{-1}\left( \pm \frac{\mathrm{ae}}{\mathrm{b}}\right)$
(B) $\tan ^{-1}\left( \pm \frac{\mathrm{be}}{\mathrm{a}}\right)$
(C) $\tan ^{-1}\left( \pm \frac{b}{a e}\right)$
(D) $\tan ^{-1}\left( \pm \frac{\mathrm{a}}{\mathrm{be}}\right)$
Q. 10 A point, ratio of whose distance from a fixed point and line $x=9 / 2$ is always $2: 3$. Then locus of the point will be -
(A) Hyperbola
(B) Ellipse
(C) Parabola
(D) Circle
Q. 11 If the minor axis of an ellipse subtends an angle $60^{\circ}$ at each focus then the eccentricity of the ellipse is -
(A) $\sqrt{3} / 2$
(B) $1 / \sqrt{2}$
(C) $2 / \sqrt{3}$
(D) None
Q. $12 L^{\prime}$ is the latus rectum of an ellipse and $\Delta$ SLL $^{\prime}$ is an equilateral triangle. The eccentricity of the ellipse is -
(A) $1 / \sqrt{5}$
(B) $1 / \sqrt{3}$
(C) $1 / \sqrt{2}$
(D) $\sqrt{2} / \sqrt{3}$
Q. 13 If the latus rectum of the ellipse $x^{2} \tan ^{2} \alpha+y^{2} \sec ^{2} \alpha=1$ is $1 / 2$ then $\alpha=$
(A) $\pi / 12$
(B) $\pi / 6$
(C) $5 \pi / 12$
(D) None
Q. 14 If P is a point on the ellipse of eccentricity e and $\mathrm{A}, \mathrm{A}^{\prime}$ are the vertices and $\mathrm{S}, \mathrm{S}^{\prime}$ are the focii then $\Delta \mathrm{SPS}^{\prime}: \Delta \mathrm{APA}^{\prime}=$
(A) $e^{3}$
(B) $\mathrm{e}^{2}$
(C) e
(D) $1 / \mathrm{e}$
Q. 15 The tangent at $P$ on the ellipse meets the minor axis in Q , and PR is drawn perpendicular to the minor axis and C is the centre. Then $\mathrm{CQ} \cdot \mathrm{CR}=$
(A) $b^{2}$
(B) $2 b^{2}$
(C) $a^{2}$
(D) $2 a^{2}$
Q. 16 The circle on $\mathrm{SS}^{\prime}$ as diameter touches the ellipse then the eccentricity of the ellipse is (where $S$ and $S^{\prime}$ are the focus of the ellipse)
(A) $2 / \sqrt{3}$
(B) $\sqrt{3} / 2$
(C) $1 / \sqrt{2}$
(D) None of these
Q. 17 The tangent at any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the tangents at the vertices $\mathrm{A}, \mathrm{A}^{\prime}$ in L and $\mathrm{L}^{\prime}$. Then $\mathrm{AL} \cdot \mathrm{A}^{\prime} \mathrm{L}^{\prime}=$
(A) $a+b$
(B) $a^{2}+b^{2}$
(C) $a^{2}$
(D) $b^{2}$
Q. 18 The tangent at any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to meets the major and minor axes in $P$ and $Q$ respectively, then $\frac{\mathrm{a}^{2}}{\mathrm{CP}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{CQ}^{2}}=$
(A) 4
(B) 3
(C) 2
(D) 1
Q. 19 The locus of extremities of the latus rectum of the family of ellipses $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is
(A) $x^{2}-a y=a^{2} b^{2}$
(B) $x^{2}-a y=b^{2}$
(C) $x^{2}+a y=a^{2}$
(D) $x^{2}+a y=b^{2}$
Q. 20 The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the circle $(x-1)^{2}+(y-2)^{2}=1$ is
(A) 0
(B) 1
(C) 3
(D) 8
Q. 21 If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intercepts equal lengths $\ell$ on the axes, then $\ell=$
(A) $\sqrt{a^{2}+b^{2}}$
(B) $a^{2}+b^{2}$
(C) $\left(a^{2}+b^{2}\right)^{2}$
(D) None of these
Q. 22 If C is the centre of the ellipse $9 x^{2}+16 y^{2}=144$ and S is one focus. The ratio of CS to major axis, is
(A) $\sqrt{7}: 16$
(B) $\sqrt{7}: 4$
(C) $\sqrt{5}: \sqrt{7}$
(D) None of these
Q. $23 \quad \mathrm{P}$ is a variable point on the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ with $\mathrm{AA}^{\prime}$ as the major axis. Then, the maximum value of the area of the triangle $\mathrm{APA}^{\prime}$ is-
(A) ab
(B) 2 ab
(C) $a b / 2$
(D) None of these
Q. 24 If PSQ is a focal chord of the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$, $a>b$, then the harmonic mean of SP and SQ is
(A) $\frac{b^{2}}{a}$
(B) $\frac{a^{2}}{b}$
(C) $\frac{2 b^{2}}{a}$
(D) $\frac{2 a^{2}}{b}$
Q. 25 If the eccentricity of the ellipse $\frac{x^{2}}{a^{2}+1}+\frac{y^{2}}{a^{2}+2}=1$ be $\frac{1}{\sqrt{6}}$, then latus rectum of ellipse is -
(A) $\frac{5}{\sqrt{6}}$
(B) $\frac{10}{\sqrt{6}}$
(C) $\frac{8}{\sqrt{6}}$
(D) None of these
Q. 26 Locus of the point which divides double ordinate of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the ratio $1: 2$ internally, is
(A) $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
(B) $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=\frac{1}{9}$
(C) $\frac{9 x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
(D) None of these
Q. 27 A tangent having slope of $-4 / 3$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersect the major and minor axes at $A$ and $B$ respectively. If $C$ is the centre of ellipse then area of triangle ABC is-
(A) 12
(B) 24
(C) 36
(D) 48
Q. 28 If $F_{1}$ and $F_{2}$ are the feet of the perpendiculars from the foci $S_{1} \& S_{2}$ of an ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$ on the tangent at any point P on the ellipse, then $\left(\mathrm{S}_{1} \mathrm{~F}_{1}\right) .\left(\mathrm{S}_{2} \mathrm{~F}_{2}\right)$ is equal to-
(A) 2
(B) 3
(C) 4
(D) 5
Q. 29 Equation of one of the common tangent of $y^{2}=4 x$ and $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ is equal to-
(A) $x+2 y+4=0$
(B) $x+2 y-4=0$
(C) $x-2 y-4=0$
(D) None of these
Q. 30 The eccentricity of ellipse which meets straight line $2 x-3 y=6$ on the $X$ axis and $4 x+5 y=20$ on the Y axis and whose principal axes lie along the co-ordinate axes is equal to-
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
(C) $\frac{\sqrt{3}}{4}$
(D) $\frac{\sqrt{7}}{4}$
Q. 31 If a circle of radius $r$ is concentric with ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then common tangent is inclined to the major axis at an angle-
(A) $\tan \sqrt{\frac{r^{2}-b^{2}}{a^{2}-r^{2}}}$
(B) $\tan \sqrt{\frac{-1}{r^{2}-b^{2}}} \frac{r^{2}-a^{2}}{}$
(C) $\tan \sqrt{-1} \sqrt{\frac{a^{2}-r^{2}}{r^{2}-b^{2}}}$
(D) None of these
Q. 32 If the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ meet the ellipse $\frac{x^{2}}{1}+\frac{y^{2}}{a^{2}}=1$ in four distinct points and $a=b^{2}-10 b+25$ then which of the following is true
(A) $\mathrm{b}<4$
(B) $4<$ b $<6$
(C) $b>6$
(D) $b \in R-[4,6]$
Q. 33 An ellipse and a hyperbola have the same centre "origin", the same foci. The minor-axis of the one is the same as the conjugate axis of the other. If $e_{1}, e_{2}$ be their eccentricities respectively, then $\frac{1}{\mathrm{e}_{1}^{2}}+\frac{1}{\mathrm{e}_{2}^{2}}$ is equal to
(A) 1
(B) 2
(C) 4
(D) 3
Q. 34 A parabola is drawn whose focus is one of the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad($ where $a>b)$ and whose directrix passes through the other focus and perpendicular to the major axes of the ellipse. Then the eccentricity of the ellipse for which the latus-rectum of the ellipse and the parabola are same, is
(A) $\sqrt{2}-1$
(B) $2 \sqrt{2}+1$
(C) $\sqrt{2}+1$
(D) $2 \sqrt{2}-1$

## Questions based on Statements

Each of the questions given below consist of Statement - I and Statement - II. Use the following Key to choose the appropriate answer.
(A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of Statement-I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.
(C) If Statement - I is true but Statement - II is false.
(D) If Statement - I is false but Statement - II is true.
Q. 35 Statement- (1) : From a point (5, $\lambda$ ) perpendicular tangents are drawn to the ellipse
$\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ then $\lambda= \pm 4$.
Statement- (2) : The locus of the point of intersection of perpendicular tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is $x^{2}+y^{2}=41$.

## Passage : 1 (Q. 36 to 38)

Variable tangent drawn to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $(\mathrm{a}>\mathrm{b})$ intersects major and minor axis at points $\mathrm{A} \& \mathrm{~B}$ in first quadrant then (where, O is the centre of the ellipse)
Q. 36 Area of $\triangle \mathrm{OAB}$ is minimum when $\theta=$
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
Q. 37 Minimum value of OA. OB is
(A) 2 b
(B) 2 ab
(C) ab
(D) b
Q. 38 Locus of centroid of $\triangle O A B$ is $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=k^{2}$ then $\mathrm{k}=$
(A) 1
(B) 2
(C) 3
(D) 4

Passage : 2 (Q. 39 \& 40)
A parabola $P: y^{2}=8 x$, ellipse $E: \frac{x^{2}}{4}+\frac{y^{2}}{15}=1$.
Q. 39 Equation of a tangent common to both the parabola P and the ellipse E is
(A) $x-2 y+8=0$
(B) $2 x-y+8=0$
(C) $x+2 y-8=0$
(D) $2 x-y-8=0$
Q. 40 Point of contact of a common tangent to P and E on the ellipse is
(A) $\left(\frac{1}{2}, \frac{15}{4}\right)$
(B) $\left(-\frac{1}{2}, \frac{15}{4}\right)$
(C) $\left(\frac{1}{2},-\frac{15}{2}\right)$
(D) $\left(-\frac{1}{2},-\frac{15}{2}\right)$

## COLUMN MATCHING QUESTIONS

## Q. 41 Column I

Column II
(A) eccentricity of
(P) 10 $\frac{x^{2}}{64}+\frac{y^{2}}{39}=1$
(B) Length of latus-
(Q) 8
rectum of $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(C) Length of major
(R) $5 / 8$
axis of $25 x^{2}+16 y^{2}=400$
(D) The length of minor
(S) $8 / 3$
axis of $16 x^{2}+9 y^{2}=144$

## LEVEL- 3

(Question asked in previous AIEEE and IIT-JEE)

## SECTION -A

Q. 1 If distance between the foci of an ellipse is equal to its minor axis, then eccentricity of the ellipse is-
[AIEEE-2002]
(A) $e=\frac{1}{\sqrt{2}}$
(B) $e=\frac{1}{\sqrt{3}}$
(C) $e=\frac{1}{\sqrt{4}}$
(D) $e=\frac{1}{\sqrt{6}}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{3}{5}$
Q. 5 A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is-
[AIEEE- 2008]
(A) $\frac{2}{3}$
(B) $\frac{4}{3}$
(C) $\frac{5}{3}$
(D) $\frac{8}{3}$
Q. 6 The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$, then the equation of the ellipse is-
[AIEEE- 2009]
(A) $x^{2}+16 y^{2}=16$
(B) $x^{2}+12 y^{2}=16$
(C) $4 x^{2}+48 y^{2}=48$
(D) $4 x^{2}+64 y^{2}=48$
Q. 7 Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$ is -
[AIEEE- 2011]
(A) $3 x^{2}+5 y^{2}-32=0$
(B) $5 \mathrm{x}^{2}+3 \mathrm{y}^{2}-48=0$
(C) $3 x^{2}+5 y^{2}-15=0$
(D) $5 \mathrm{x}^{2}+3 \mathrm{y}^{2}-32=0$
[AIEEE- 2006]
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
Q. 8 Statement 1 : An equation of a common tangent to the parabola $\mathrm{y}^{2}=16 \sqrt{3} \mathrm{x}$ and the ellipse $2 x^{2}+y^{2}=4$ is $y=2 x+2 \sqrt{3}$.
Statement 2: If the line $y=m x+\frac{4 \sqrt{3}}{m}$, $(\mathrm{m} \neq 0)$ is a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$, then m satisfies $\mathrm{m}^{4}+2 \mathrm{~m}^{2}=24$. [AIEEE- 2012]
(A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
(B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(C) Statement 1 is true, Statement 2 is false.
(D) Statement 1 is false, Statement 2 is true.
Q. 9 An ellipse is drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$ as its semi minor axis and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :
[AIEEE- 2012]
(A) $x^{2}+4 y^{2}=8$
(B) $4 x^{2}+y^{2}=8$
(C) $x^{2}+4 y^{2}=16$
(D) $4 x^{2}+y^{2}=4$
Q. 10 The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having centre at $(0,3)$ is -
[JEE Main - 2013]
(A) $x^{2}+y^{2}-6 y-5=0$
(B) $x^{2}+y^{2}-6 y+5=0$
(C) $x^{2}+y^{2}-6 y-7=0$
(D) $x^{2}+y^{2}-6 y+7=0$

## SECTION -B

Q. 1 Let P be a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci $F_{1}$ and $F_{2}$. If $A$ is the area of the triangle $\mathrm{PF}_{1} \mathrm{~F}_{2}$, then the maximum value of $A$ is-
[IIT-1994]
(A) 2abe
(B) abe
(C) $\frac{1}{2}$ abe
(D) None
Q. 2 If $\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{F}_{1}=(3,0), \mathrm{F}_{2}=(-3,0)$ and $16 \mathrm{x}^{2}+25 \mathrm{y}^{2}=400$, then $\mathrm{PF} \mathrm{F}_{1}+\mathrm{PF}_{2}=$
(A) 8
(B) 6
(C) 10
(D) 12
Q. 3 An ellipse has OB as semi - minor axis. F and F ' are its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is-
[IIT- 97/AIEEE-2005]
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{2}{3}$
(D) $\frac{1}{3}$
Q. 4 The number of values of c such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$ is
[IIT-1998]
(A) 0
(B) 1
(C) 2
(D) infinite
Q. 5 Locus of middle point of segment of tangent to ellipse $x^{2}+2 y^{2}=2$ which is intercepted between the coordinate axes, is-
[IIT Scr. 2004]
(A) $\frac{1}{2 \mathrm{x}^{2}}+\frac{1}{4 \mathrm{y}^{2}}=1$
(B) $\frac{1}{4 \mathrm{x}^{2}}+\frac{1}{2 \mathrm{y}^{2}}=1$
(C) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
(D) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
Q. 6 A tangent is drawn at some point P of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is intersecting to the coordinate axes at points A \& B then minimum area of the $\Delta \mathrm{OAB}$ is-
[IIT Scr. 2005]
(where O is the centre of ellipse.)
(A) ab
(B) $\frac{a^{2}+b^{2}}{2}$
(C) $\frac{a^{2}+b^{2}}{4}$
(D) $\frac{a^{2}+b^{2}-a b}{3}$
Q. 7 The line passing through the extremity A of the major axis and extremity $B$ of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets its auxiliary circle at the point M . Then the area of the triangle with vertices at $A, M$ and the origin $O$ is
[IIT -2009]
(A) $\frac{31}{10}$
(B) $\frac{29}{10}$
(C) $\frac{21}{10}$
(D) $\frac{27}{10}$

## Passage : (Q. 8 to Q.10)

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, touching the ellipse at points A and B .
[IIT 2010]
Q. 8 The coordinates of $A$ and $B$ are
(A) $(3,0)$ and $(0,2)$
(B) $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
(C) $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
(D) $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
Q. 9 The orthocentre of the triangle PAB is
(A) $\left(5, \frac{8}{7}\right)$
(B) $\left(\frac{7}{5}, \frac{25}{8}\right)$
(C) $\left(\frac{11}{5}, \frac{8}{5}\right)$
(D) $\left(\frac{8}{25}, \frac{7}{5}\right)$
Q. 10 The equation of the locus of the point whose distances from the point P and the line AB are equal, is
(A) $9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0$
(B) $x^{2}+9 y^{2}+6 x y-54 x+62 y-241=0$
(C) $9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0$
(D) $x^{2}+y^{2}-2 x y+27 x+31 y-120=0$
Q. 11 The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse $\mathrm{E}_{2}$ passing through the point $(0,4)$ circumscribes the rectangle R . The eccentricity of the ellipse $\mathrm{E}_{2}$ is
[IIT Scr. 2012]
(A) $\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$

## LEVEL- 1

| Q.No. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ans. | B | B | B | C | B | B | A | B | C | A | A | B | B | B | B | D | C | B | B | A |
| Q.No. | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | $\mathbf{3 7}$ | $\mathbf{3 8}$ | $\mathbf{3 9}$ | $\mathbf{4 0}$ |
| Ans. | B | A | B | A | B | A | A | A | C | A | A | A | C | D | C | C | C | D | B | $\mathrm{A}, \mathrm{B}$ |

## LEVEL- 2

| Q.No. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ans. | A | A | B | B | B | C | A | D | C | B | A | B | A | C | A | C | D | D | C | A |
| Q.No. | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | $\mathbf{3 7}$ | $\mathbf{3 8}$ | $\mathbf{3 9}$ | $\mathbf{4 0}$ |
| Ans. | A | D | A | A | B | A | B | B | A | D | A | $\mathrm{A}, \mathrm{C}, \mathrm{D}$ | B | A | A | C | B | C | A | B |

41. (A) $\rightarrow \mathrm{R}$; (B) $\rightarrow \mathrm{S}$; (C) $\rightarrow \mathrm{P}$; (D) $\rightarrow \mathrm{T}$

## LEVEL- 3

SECTION-A

| Qus. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ans. | A | B | B | D | D | B | A, B | A | C | C |
|  |  |  |  |  |  |  |  |  |  |  |

## SECTION-B

1.[B] Maximum area $=\frac{1}{2} .(2 \mathrm{ae}) \mathrm{b}=$ abe
2.[C] $\mathrm{PF}_{1}+\mathrm{PF}_{2}=$ Length of major axis
3.[B] $\quad \mathrm{ae}=\mathrm{b} \Rightarrow \mathrm{e}=\frac{1}{\sqrt{2}}$
4.[C] $\mathrm{c}^{2}=4.4^{2}+1=65$
5.[A] $\frac{x^{2}}{2}+\frac{y^{2}}{1}=1$
$h=\frac{\sqrt{2}}{2 \cos \theta} ; \Rightarrow \cos \theta=\frac{1}{\sqrt{2} h}$
$\mathrm{k}=\frac{1}{2 \sin \theta} \Rightarrow \sin \theta=\frac{1}{2 \mathrm{k}}$
Now required locus is $\frac{1}{2 \mathrm{x}^{2}}+\frac{1}{4 \mathrm{y}^{2}}=1$
6.[A] Minimum area $=\frac{1}{2} \cdot \sqrt{2} \mathrm{a} \cdot \sqrt{2} \mathrm{~b}=\mathrm{ab}$
7.[D]


Equation of AB is $\mathrm{y}-1=\left(\frac{1-0}{0-3}\right)(\mathrm{x}-0)$
$\Rightarrow \mathrm{y}-1=-\frac{1}{3} \mathrm{x}$
Equation of auxiliary circle is $x^{2}+y^{2}=9$
Now $x^{2}+\left(1-\frac{1}{3} x\right)^{2}=9$
$\Rightarrow x^{2}+\frac{x^{2}+9-6 x}{9}=9$
$\Rightarrow 10 \mathrm{x}^{2}-6 \mathrm{x}-72=0$
$\Rightarrow 5 \mathrm{x}^{2}-3 \mathrm{x}-36=0$
$\Rightarrow(\mathrm{x}-3)(5 \mathrm{x}+12)=0$
Now, area of $\mathrm{OAM}=\frac{1}{2}\left|\begin{array}{lc}3 & -\frac{12}{5} \\ 0 & \frac{9}{5}\end{array}\right|=\frac{27}{10}$
8.[D] Equation of tangent
$y=m x \pm \sqrt{9 m^{2}+4}$
It passes through $(3,4)$
$4=3 m \pm \sqrt{9 m^{2}+4}$
$\mathrm{m}=\frac{1}{2}$ and undefined
So equation of the tangent will be
$x-2 y+5=0$ and $x=3$
so point of contacts are $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
9.[C]


Equation of two altitudes PH and AQ are
$3 x-y-5=0$ and $2 x+y-6=0$ respectively
So orthocenter will be $\left(\frac{11}{5}, \frac{8}{5}\right)$
10.[A] Equation of AB is $\mathrm{x}+3 \mathrm{y}-3=0$

So required locus will be
$(x-3)^{2}+(y-4)^{2}=\frac{(x+3 y-3)^{2}}{10}$
$9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0$

## 11.[C]



Let equation of ellipse $E_{2}$ is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
it passes through $(0,4)$
so $\mathrm{b}^{2}=16$
and also passes through $(3,2)$
So $\frac{9}{a^{2}}+\frac{4}{b^{2}}=1$
$\Rightarrow \frac{9}{\mathrm{a}^{2}}+\frac{1}{4}=1$
$\Rightarrow \mathrm{a}^{2}=12$
$\Rightarrow$ as a $<$ b
so $12=16\left(1-\mathrm{e}^{2}\right)$
$\Rightarrow \mathrm{e}^{2}=\frac{1}{4}$
$\Rightarrow \mathrm{e}=\frac{1}{2}$

