BEMAIN + ADVANCED

MATHEMATICS

TOPIC NAME ELLIPSE

(PRACTICE SHEET)

Q.1 The equation to the ellipse (referred to its axes as the axes of x and y respectively) whose foci are $(\pm 2, 0)$ and eccentricity 1/2, is-

(A)
$$\frac{x^2}{12} + \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{16} + \frac{y^2}{12} = 1$
(C) $\frac{x^2}{16} + \frac{y^2}{8} = 1$ (D) None of these

- Q.2 The eccentricity of the ellipse $9x^2 + 5y^2 - 30$ y = 0 is-(A) 1/3 (B) 2/3(C) 3/4 (D) None of these
- Q.3 If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is-

(B) $\sqrt{3}/2$ (C) 2/3(D) $\sqrt{2}/3$ (A) 3/2

Q.4 If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse is-

> (B) 2/3 (C) $1/\sqrt{3}$ (A) 1/2 (D) 4/5

The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ Q.5 represents an ellipse if-

$$\begin{aligned} &(A) \ \Delta = 0, \ h^2 < ab \qquad (B) \ \Delta \neq 0, \ h^2 < ab \\ &(C) \ \Delta \neq 0, \ h^2 > ab \qquad (D) \ \Delta \neq 0, \ h^2 = ab \end{aligned}$$

Q.6 Equation of the ellipse whose focus is (6, 7)directrix is x + y + 2 = 0 and $e = 1/\sqrt{3}$ is-(A) $5x^2 + 2xy + 5y^2 - 76x - 88y + 506 = 0$ (B) $5x^2 - 2xy + 5y^2 - 76x - 88y + 506 = 0$ (C) $5x^2 - 2xy + 5y^2 + 76x + 88y - 506 = 0$ (D) None of these

The eccentricity of an ellipse $\frac{x^2}{x^2} + \frac{y^2}{b^2} = 1$ Q.7

whose latus rectum is half of its major axis is-

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\sqrt{\frac{2}{3}}$
(C) $\frac{\sqrt{3}}{2}$ (D) None of these

- Q.8 The equation of the ellipse whose centre is at origin and which passes through the points (-3,1) and (2,-2) is-(A) $5x^2 + 3y^2 = 32$ (B) $3x^2 + 5y^2 = 32$ (C) $5x^2 - 3y^2 = 32$ (D) $3x^2 + 5y^2 + 32 = 0$
- Q.9 The equation of the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (-3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$, is-(A) $3x^2 + 6y^2 = 33$ (B) $5x^2 + 3y^2 = 48$ (C) $3x^2 + 5y^2 - 32 = 0$ (D) None of these
- Q.10 Latus rectum of ellipse $4x^2 + 9y^2 - 8x - 36y + 4 = 0$ is-(A) 8/3 (B) 4/3(C) $\frac{\sqrt{5}}{3}$ (D) 16/3
- Q.11 The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is-

(A) $x^2 + 2y^2 = 100$ (B) $x^2 + \sqrt{2} y^2 = 10$ (C) $x^2 - 2y^2 = 100$ (D) None of these

- Q.12 If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is-
 - (B) $1/\sqrt{2}$ (A) 1/2 (D) $1/\sqrt{3}$ (C) 1/3
- The equation $2x^2 + 3y^2 = 30$ represents-Q.13 (A) A circle (B) An ellipse (C) A hyperbola (D) A parabola
- Q.14 The equation of the ellipse whose centre is (2, -3), one of the foci is (3, -3) and the corresponding vertex is (4, -3) is-

(A)
$$\frac{(x-2)^2}{3} + \frac{(y+3)^2}{4} = 1$$

(B) $\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} = 1$
(C) $\frac{x^2}{3} + \frac{y^2}{4} = 1$

Q.15 Eccentricity of the ellipse $4x^2 + y^2 - 8x + 2y + 1 = 0$ is-(A) $1/\sqrt{3}$ (B) $\sqrt{3}/2$ (C) 1/2 (D) None of these

Q.16 The equation of ellipse whose distance between the foci is equal to 8 and distance between the directrix is 18, is-

> (A) $5x^2 - 9y^2 = 180$ (B) $9x^2 + 5y^2 = 180$ (C) $x^2 + 9y^2 = 180$ (D) $5x^2 + 9y^2 = 180$

Q.17 In an ellipse the distance between its foci is 6 and its minor axis is 8. Then its eccentricity is-

(A)
$$\frac{4}{5}$$
 (B) $\frac{1}{\sqrt{52}}$
(C) $\frac{3}{5}$ (D) $\frac{1}{2}$

Q.18 The eccentricity of an ellipse is 2/3, latus rectum is 5 and centre is (0, 0). The equation of the ellipse is -

(A)
$$\frac{x^2}{81} + \frac{y^2}{45} = 1$$
 (B) $\frac{4x^2}{81} + \frac{4y^2}{45} = 1$
(C) $\frac{x^2}{9} + \frac{y^2}{5} = 1$ (D) $\frac{x^2}{81} + \frac{y^2}{45} = 5$

- Q.19 The length of the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{49} = 1 \text{ is } -$ (A) 98/6 (B) 72/7 (C) 72/14 (D) 98/12
- Q.20 For the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$, the eccentricity is (A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{2}{\sqrt{7}}$ (D) $\frac{1}{3}$
- Q.21 The equation of the ellipse whose one of the vertices is (0, 7) and the corresponding directrix is y = 12, is-(A) $95x^2 + 144y^2 = 4655$ (B) $144x^2 + 95y^2 = 4655$
 - (C) $95x^2 + 144y^2 = 13680$

(D) None of these

- Q.22 The foci of the ellipse, $25(x + 1)^2 + 9(y + 2)^2 = 225$, are at-(A) (-1, 2) and (-1, -6) (B) (-2, 1) and (-2, 6) (C) (-1, -2) and (-2, -1) (D) (-1, -2) and (-1, -6)
- Q.23 The eccentricity of the ellipse represented by the equation $25x^2 + 16y^2 - 150x - 175 = 0$ is -(A) 2/5 (B) 3/5 (C) 4/5 (D) None of these

Q.24 The equation of the ellipse whose foci are $(\pm 5, 0)$ and one of its directrix is 5x = 36, is -

(A)
$$\frac{x^2}{36} + \frac{y^2}{11} = 1$$
 (B) $\frac{x^2}{6} + \frac{y^2}{\sqrt{11}} = 1$
(C) $\frac{x^2}{6} + \frac{y^2}{11} = 1$ (D) None of these

Q.25 If S and S' are two foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a < b) \text{ and } P(x_1, y_1) \text{ a point on}$ it, then SP + S' P is equal to-(A) 2a (B) 2b (C) a + ex₁ (D) b + ey₁

Q.26 Let P be a variable point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with foci S and S'. If A be the area of triangle PSS', then maximum value of A is-(A) 12 sq. units (B) 24 sq. units (C) 36 sq. units (D) 48 sq. units

Question Paramatric equation

- **Q.27** The parametric representation of a point on the ellipse whose foci are (-1, 0) and (7, 0) and eccentricity 1/2 is-
 - (A) $(3 + 8\cos\theta, 4\sqrt{3}\sin\theta)$
 - (B) $(8 \cos \theta, 4\sqrt{3} \sin \theta)$
 - (C) $(3+4\sqrt{3} \cos\theta, 8\sin\theta)$
 - (D) None of these

Question Ellipse and a point, Ellipse and a line

- Q.28 The position of the point (4,-3) with respect to the ellipse $2x^2 + 5y^2 = 20$ is-(A) outside the ellipse (B) on the ellipse (C) on the major axis (D) None of these
- Q.29 If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then its eccentric angle θ is equal to-(A) 0 (B) 90° (C) 45° (D) 60°
- Q.30 Find the equation of the tangent to the ellipse
 - $x^{2} + 2y^{2} = 4 \text{ at the points where ordinate is 1.}$ (A) $x + \sqrt{2} y - 2\sqrt{2} = 0 \& x - \sqrt{2} y + 2\sqrt{2} = 0$ (B) $x - \sqrt{2} y - 2\sqrt{2} = 0 \& x - \sqrt{2} y + 2\sqrt{2} = 0$ (C) $x + \sqrt{2} y + 2\sqrt{2} = 0 \& x + \sqrt{2} y + 2\sqrt{2} = 0$ (D) None of these
- Q.31 Find the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which make equal intercepts on the axes.

(A)
$$y = x \pm \sqrt{a^2 + b^2}$$
 & $y = -x \pm \sqrt{a^2 + b^2}$
(B) $y = x + \sqrt{a^2 + b^2}$ & $y = -x \pm \sqrt{a^2 + b^2}$
(C) $y = x + \sqrt{a^2 + b^2}$ & $y = x \pm \sqrt{a^2 + b^2}$
(D) None of these

- Q.32 Find the equations of tangents to the ellipse $9x^2 + 16y^2 = 144$ which pass through the point (2,3). (A) y = 3 and y = -x + 5(B) y = 5 and y = -x + 3(C) y = 3 and y = x - 5(D) None of these
- Q.33 If any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intercepts lengths h and k on the axes, then $h^2 + k^2 + h^2 + k^2$

(A)
$$\frac{h^2}{a^2} + \frac{k^2}{b^2} = 1$$
 (B) $\frac{h^2}{a^2} + \frac{k^2}{b^2} = 2$

(C)
$$\frac{a^2}{h^2} + \frac{b^2}{k^2} = 1$$
 (D) $\frac{a^2}{h^2} + \frac{b^2}{k^2} = 2$

- Q.34 The equation of the tangent at the point (1/4, 1/4) of the ellipse $\frac{x^2}{4} + \frac{y^2}{12} = 1$, is-(A) 3x + y = 48 (B) 3x + y = 3(C) 3x + y = 16 (D) None of these
- Q.35 The line x $\cos \alpha + y \sin \alpha = p$ will be a tangent to the conic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if-(A) $p^2 = a^2 \sin^2 \alpha + b^2 \cos^2 \alpha$ (B) $p^2 = a^2 + b^2$ (C) $p^2 = b^2 \sin^2 \alpha + a^2 \cos^2 \alpha$ (D) None of these
- Q.36 If y = mx + c is tangent on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, then the value of c is-(A) 0 (B) 3/m (C) $\pm \sqrt{9m^2 + 4}$ (D) $\pm 3\sqrt{1 + m^2}$
- Q.37 The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line y = mx + c intersect in real points only if-(A) $a^2m^2 < c^2 - b^2$ (B) $a^2m^2 > c^2 - b^2$ (C) $a^2m^2 \ge c^2 - b^2$ (D) $c \ge b$
- Q.38 If the straight line y = 4x + c is a tangent to the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$, then c will be equal to-(A) ± 4 (B) ± 6 (C) ± 1 (D) None of these
- Q.39 The equation of the tangents to the ellipse $4x^2 + 3y^2 = 5$ which are parallel to the line y = 3x + 7 are

(A)
$$y = 3x \pm \sqrt{\frac{155}{3}}$$
 (B) $y = 3x \pm \sqrt{\frac{155}{12}}$
(C) $y = 3x \pm \sqrt{\frac{95}{12}}$ (D) None of these

P

Q.40 The equation of tangent to the ellipse $x^2 + 3y^2 = 3$ which is \perp^r to line 4y = x - 5 is-(A) 4x + y + 7 = 0 (B) 4x + y - 7 = 0(C) 4x + y - 3 = 0 (D) None of these

LEVEL- 2

Q.1 The area of quadrilateral formed by tangents at the ends of latus-rectum of the ellipse $x^2 + 2y^2 = 2$ is-

(A)
$$\frac{8}{\sqrt{2}}$$
 (B) $8\sqrt{2}$

- (C) 8 (D) None of these
- Q.2 The equation $\frac{x^2}{10-a} + \frac{y^2}{4-a} = 1$ represents an ellipse if -(A) a < 4 (B) a > 4

(D) a > 10

Q.3 If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of x and y respectively) is k and the distance between its foci is 2h, then its equation is-

(A)
$$\frac{x^2}{k^2} + \frac{y^2}{h^2} = 1$$

(B) $\frac{x^2}{k^2} + \frac{y^2}{k^2 - h^2} = 1$
(C) $\frac{x^2}{k^2} + \frac{y^2}{h^2 - k^2} = 1$
(D) $\frac{x^2}{k^2} + \frac{y^2}{k^2 + h^2} = 1$

(C) 4 < a < 10

Q.4 The locus of the mid-points of the portion of the tangents to the ellipse intercepted between the axes

is -

(A) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$ (B) $\frac{a^2}{x^2} + \frac{b^2}{y^2} = 4$ (C) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 4$ (D) None of these

- Q.5 If S and T are foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and B is an end of the minor axis. If STB is an equilateral triangle the eccentricity of ellipse is-
 - (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{\sqrt{3}}{2}$
- Q.6 The sum of the squares of the perpendicular on any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from two points on the minor axis each distance $\sqrt{a^2 - b^2}$ from the centre is -(A) a^2 (B) b^2 (C) $2a^2$ (D) $2b^2$
- Q.7 If (5, 12) and (24, 7) are the focii of an ellipse passing through origin, then the eccentricity of ellipse is -

(A)
$$\frac{\sqrt{386}}{38}$$
 (B) $\frac{\sqrt{386}}{12}$
(C) $\frac{\sqrt{386}}{13}$ (D) $\frac{\sqrt{386}}{25}$

Q.8 The common tangent of $x^2 + y^2 = 4$ and $2x^2 + y^2 = 2$ is-(A) x + y + 4 = 0 (B) x - y + 7 = 0(C) 2x + 3y + 8 = 0 (D) None

Q.9 The eccentric angles of the extremities of latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are given by-(A) $\tan^{-1}\left(\pm \frac{ae}{b}\right)$ (B) $\tan^{-1}\left(\pm \frac{be}{a}\right)$ (C) $\tan^{-1}\left(\pm \frac{b}{ae}\right)$ (D) $\tan^{-1}\left(\pm \frac{a}{be}\right)$

- Q.10 A point, ratio of whose distance from a fixed point and line x = 9/2 is always 2 : 3. Then locus of the point will be (A) Hyperbola (B) Ellipse
 - (C) Parabola (D) Circle
- Q.11 If the minor axis of an ellipse subtends an angle 60° at each focus then the eccentricity of the ellipse is -

(A) $\sqrt{3}/2$	(B) $1/\sqrt{2}$
_	

- (C) $2/\sqrt{3}$ (D) None
- **Q.12** LL' is the latus rectum of an ellipse and Δ SLL' is an equilateral triangle. The eccentricity of the ellipse is -
 - (A) $1/\sqrt{5}$ (B) $1/\sqrt{3}$ (C) $1/\sqrt{2}$ (D) $\sqrt{2}/\sqrt{3}$
- Q.13 If the latus rectum of the ellipse $x^{2} \tan^{2} \alpha + y^{2} \sec^{2} \alpha = 1$ is 1/2 then $\alpha =$ (A) $\pi/12$ (B) $\pi/6$ (C) $5\pi/12$ (D) None
- Q.14 If P is a point on the ellipse of eccentricity e and A, A' are the vertices and S, S' are the focii then $\Delta SPS' : \Delta APA' =$ (A) e³ (B) e²
 - (C) e (D) 1/e
- Q.15 The tangent at P on the ellipse meets the minor axis in Q, and PR is drawn perpendicular to the minor axis and C is the centre. Then CQ . CR = (A) b^2 (B) $2b^2$ (C) a^2 (D) $2a^2$
- Q.16 The circle on SS' as diameter touches the ellipse then the eccentricity of the ellipse is (where S and S' are the focus of the ellipse)

(A) $2/\sqrt{3}$	(B) $\sqrt{3}/2$
(C) $1/\sqrt{2}$	(D) None of these

- Q.17 The tangent at any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the tangents at the vertices A, A' in L and L'. Then AL. A'L' = (A) a + b (B) a^2 + b^2 (C) a^2 (D) b^2
- Q.18 The tangent at any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ to meets the major and minor axes in P and Q respectively, then $\frac{a^2}{CP^2} + \frac{b^2}{CQ^2} =$ (A) 4 (B) 3 (C) 2 (D) 1
- Q.19 The locus of extremities of the latus rectum of the family of ellipses $b^2x^2 + a^2y^2 = a^2b^2$ is (A) $x^2 - ay = a^2b^2$ (B) $x^2 - ay = b^2$ (C) $x^2 + ay = a^2$ (D) $x^2 + ay = b^2$
- Q.20 The length of the common chord of the ellipse $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1 \text{ and}$ the circle $(x-1)^2 + (y-2)^2 = 1$ is (A) 0 (B) 1 (C) 3 (D) 8
- Q.21 If any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

intercepts equal lengths ℓ on the axes, then $\ell =$

- (A) $\sqrt{a^2 + b^2}$ (B) $a^2 + b^2$ (C) $(a^2 + b^2)^2$ (D) None of these
- **Q.22** If C is the centre of the ellipse $9x^2 + 16y^2 = 144$ and S is one focus. The ratio of CS to major axis, is
 - (A) $\sqrt{7}$: 16 (B) $\sqrt{7}$: 4 (C) $\sqrt{5}$: $\sqrt{7}$ (D) None of these

Q.23 P is a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with AA' as the major axis. Then, the maximum value of the area of the triangle APA' is-(A) ab (B) 2ab (C) ab/2 (D) None of these

Q.24 If PSQ is a focal chord of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
,
a > b, then the harmonic mean of SP and SQ is

(A)
$$\frac{b^2}{a}$$
 (B) $\frac{a^2}{b}$ (C) $\frac{2b^2}{a}$ (D) $\frac{2a^2}{b}$

Q.25 If the eccentricity of the ellipse $\frac{x^2}{a^2+1} + \frac{y^2}{a^2+2} = 1 \text{ be } \frac{1}{\sqrt{6}}, \text{ then latus rectum of}$ ellipse is -

(A)
$$\frac{5}{\sqrt{6}}$$
 (B) $\frac{10}{\sqrt{6}}$
(C) $\frac{8}{\sqrt{6}}$ (D) None of these

Q.26 Locus of the point which divides double ordinate of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the ratio

1:2 internally, is

(A)
$$\frac{x^2}{a^2} + \frac{9y^2}{b^2} = 1$$
 (B) $\frac{x^2}{a^2} + \frac{9y^2}{b^2} = \frac{1}{9}$
(C) $\frac{9x^2}{a^2} + \frac{9y^2}{b^2} = 1$ (D) None of these

Q.27 A tangent having slope of -4/3 to the ellipse $\frac{x^2}{18} + \frac{y^2}{32} = 1$ intersect the major and minor axes

at A and B respectively. If C is the centre of ellipse then area of triangle ABC is-

- (A) 12 (B) 24 (C) 36 (D) 48
- **Q.28** If F_1 and F_2 are the feet of the perpendiculars from the foci $S_1 \& S_2$ of an ellipse $\frac{x^2}{5} + \frac{y^2}{3} = 1$

on the tangent at any point P on the ellipse, then $(S_1 F_1)$. $(S_2 F_2)$ is equal to-

(A) 2 (B) 3 (C) 4 (D) 5

Q.29 Equation of one of the common tangent of

$$y^2 = 4x$$
 and $\frac{x^2}{4} + \frac{y^2}{3} = 1$ is equal to-
(A) $x + 2y + 4 = 0$ (B) $x + 2y - 4 = 0$

- (C) x 2y 4 = 0 (D) None of these
- Q.30 The eccentricity of ellipse which meets straight line 2x - 3y = 6 on the X axis and 4x + 5y = 20on the Y axis and whose principal axes lie along the co-ordinate axes is equal to-

(A)
$$\frac{1}{2}$$
 (B) $\frac{4}{5}$
(C) $\frac{\sqrt{3}}{4}$ (D) $\frac{\sqrt{7}}{4}$

Q.31 If a circle of radius r is concentric with ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then common tangent is inclined to the major axis at an angle-

(A)
$$\tan^{-1}\sqrt{\frac{r^2 - b^2}{a^2 - r^2}}$$
 (B) $\tan^{-1}\sqrt{\frac{r^2 - b^2}{r^2 - a^2}}$
(C) $\tan^{-1}\sqrt{\frac{a^2 - r^2}{r^2 - b^2}}$ (D) None of these

Q.32 If the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ meet the ellipse $\frac{x^2}{1} + \frac{y^2}{a^2} = 1$ in four distinct points and $a = b^2 - 10b + 25$ then which of the following is true

Q.33An ellipse and a hyperbola have the same centre
"origin", the same foci. The minor-axis of the
one is the same as the conjugate axis of the
other. If e_1 , e_2 be their eccentricities
respectively, then $\frac{1}{e_1^2} + \frac{1}{e_2^2}$ is equal to
(A) 1
(B) 2<br/(C) 4
(D) 3

Q.34 A parabola is drawn whose focus is one of the foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b) and whose directrix passes through the other

focus and perpendicular to the major axes of the ellipse. Then the eccentricity of the ellipse for which the latus-rectum of the ellipse and the parabola are same, is

(A)
$$\sqrt{2} - 1$$
 (B) $2\sqrt{2} + 1$
(C) $\sqrt{2} + 1$ (D) $2\sqrt{2} - 1$

Questions based on Statements

Each of the questions given below consist of Statement -I and Statement -I. Use the following Key to choose the appropriate answer.

- (A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of Statement- I.
- (B) If both Statement I and Statement II are true but Statement - II is not the correct explanation of Statement - I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- Q.35 Statement- (1) : From a point (5, λ) perpendicular tangents are drawn to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1 \text{ then } \lambda = \pm 4.$

Statement- (2) : The locus of the point of intersection of perpendicular tangent to the

ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 is $x^2 + y^2 = 41$.

Passage : 1 (Q.36 to 38)

Variable tangent drawn to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

(a > b) intersects major and minor axis at points A & B in first quadrant then (where, O is the centre of the ellipse)

Q.36 Area of $\triangle OAB$ is minimum when $\theta =$

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{6}$
(C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

Q.37 Minimum value of OA. OB is (A) 2b (B) 2ab (C) ab (D) b

Q.38 Locus of centroid of $\triangle OAB$ is $\frac{a^2}{x^2} + \frac{b^2}{y^2} = k^2$ then k = (A) 1 (B) 2 (C) 3 (D) 4 Passage : 2 (Q.39 & 40)

A parabola P :
$$y^2 = 8x$$
, ellipse E : $\frac{x^2}{4} + \frac{y^2}{15} = 1$.

Q.39 Equation of a tangent common to both the parabola P and the ellipse E is

(A) x - 2y + 8 = 0 (B) 2x - y + 8 = 0(C) x + 2y - 8 = 0 (D) 2x - y - 8 = 0

Q.40 Point of contact of a common tangent to P and E on the ellipse is

(A)
$$\left(\frac{1}{2}, \frac{15}{4}\right)$$
 (B) $\left(-\frac{1}{2}, \frac{15}{4}\right)$
(C) $\left(\frac{1}{2}, -\frac{15}{2}\right)$ (D) $\left(-\frac{1}{2}, -\frac{15}{2}\right)$

COLUMN MATCHING QUESTIONS

Q.41	Column I	Column I
	(A) eccentricity of	(P) 10
	$\frac{x^2}{64} + \frac{y^2}{39} = 1$	
	(B) Length of latus-	(Q) 8
	rectum of $\frac{x^2}{9} + \frac{y^2}{4} = 1$	
	(C) Length of major	(R) 5/8
	axis of $25x^2 + 16y^2 = 400$	
	(D) The length of minor	(S) 8/3
	axis of $16x^2 + 9y^2 = 144$	
		(T) 6

LEVEL-3

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q.1 If distance between the foci of an ellipse is equal to its minor axis, then eccentricity of the ellipse is- [AIEEE-2002]

(A)
$$e = \frac{1}{\sqrt{2}}$$
 (B) $e = \frac{1}{\sqrt{3}}$
(C) $e = \frac{1}{\sqrt{4}}$ (D) $e = \frac{1}{\sqrt{6}}$

Q.2 The equation of an ellipse, whose major axis = 8 and eccentricity = 1/2, is

[AIEEE-2002] (A) $3x^2 + 4y^2 = 12$ (B) $3x^2 + 4y^2 = 48$ (C) $4x^2 + 3y^2 = 48$ (D) $3x^2 + 9y^2 = 12$

Q.3 The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 4, then the equation of the ellipse is-[AIEEE- 2004]

(A)
$$3x^2 + 4y^2 = 1$$

(B) $3x^2 + 4y^2 = 12$
(C) $4x^2 + 3y^2 = 12$
(D) $4x^2 + 3y^2 = 1$

Q.4 In an ellipse, the distance between its foci is 6 and minor axis is 8. Then its eccentricity is-[AIEEE- 2006]

(A)
$$\frac{1}{2}$$
 (B) $\frac{4}{5}$

(C)
$$\frac{1}{\sqrt{5}}$$
 (D) $\frac{3}{5}$

- Q.5 A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is
 - $\frac{1}{2}$. Then the length of the semi-major axis is-

(A)
$$\frac{2}{3}$$
 (B) $\frac{4}{3}$ (C) $\frac{5}{3}$ (D) $\frac{8}{3}$

Q.6

The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0), then the equation of the ellipse is-

[AIEEE- 2009]

(A)
$$x^2 + 16y^2 = 16$$
 (B) $x^2 + 12y^2 = 16$
(C) $4x^2 + 48y^2 = 48$ (D) $4x^2 + 64y^2 = 48$

Q.7 Equation of the ellipse whose axes are the axes of coordinates and which passes through the point (-3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$ is -

(A)
$$3x^2 + 5y^2 - 32 = 0$$

(B) $5x^2 + 3y^2 - 48 = 0$
(C) $3x^2 + 5y^2 - 15 = 0$
(D) $5x^2 + 3y^2 - 32 = 0$

ELLIPSE

Q.8 Statement 1 : An equation of a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + 2\sqrt{3}$.

Statement 2 : If the line
$$y = mx + \frac{4\sqrt{3}}{m}$$
,
(m \neq 0) is a common tangent to the parabola
 $y^2 = 16\sqrt{3} x$ and the ellipse $2x^2 + y^2 = 4$, then
m satisfies $m^4 + 2m^2 = 24$. [AIEEE- 2012]

(A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.

(B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.

- (C) Statement 1 is true, Statement 2 is false.
- (D) Statement 1 is false, Statement 2 is true.
- Q.9 An ellipse is drawn by taking a diameter of the circle $(x 1)^2 + y^2 = 1$ as its semi minor axis and a diameter of the circle $x^2 + (y 2)^2 = 4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :

[AIEEE- 2012] (A) $x^2 + 4y^2 = 8$ (B) $4x^2 + y^2 = 8$ (C) $x^2 + 4y^2 = 16$ (D) $4x^2 + y^2 = 4$

Q.10 The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at (0, 3) is - [JEE Main - 2013] (A) $x^2 + y^2 - 6y - 5 = 0$ (B) $x^2 + y^2 - 6y + 5 = 0$ (C) $x^2 + y^2 - 6y - 7 = 0$ (D) $x^2 + y^2 - 6y + 7 = 0$

SECTION -B

Q.1 Let P be a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci F₁ and F₂. If A is the area of the triangle PF₁ F₂, then the maximum value of A is- [IIT-1994] (A) 2abe (B) abe (C) $\frac{1}{2}$ abe (D) None

Q.2 If P(x, y), $F_1 = (3,0)$, $F_2 = (-3, 0)$ and 16x² + 25 y² = 400, then P $F_1 + P F_2 =$

(A) 8	(B) 6
(C) 10	(D) 12

Q.3 An ellipse has OB as semi - minor axis. F and F' are its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is-

[IIT- 97/AIEEE-2005]

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{\sqrt{2}}$
(C) $\frac{2}{3}$ (D) $\frac{1}{3}$

Q.4 The number of values of c such that the straight

line $y = 4x + c$ touche	s the curve $\frac{2}{3}$	$\frac{x^2}{4} + y^2 = 1$ is
		[IIT-1998]
(A) 0	(B) 1	
(C) 2	(D) infinite	;

Q.5 Locus of middle point of segment of tangent to ellipse $x^2 + 2y^2 = 2$ which is intercepted between the coordinate axes, is-

[IIT Scr. 2004]
(A)
$$\frac{1}{2x^2} + \frac{1}{4y^2} = 1$$
 (B) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$
(C) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ (D) $\frac{x^2}{4} + \frac{y^2}{2} = 1$

Q.6 A tangent is drawn at some point P of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is intersecting to the coordinate axes at points A & B then minimum area of the \triangle OAB is- [IIT Scr. 2005] (where O is the centre of ellipse.)

(A) ab
(B)
$$\frac{a^2 + b^2}{2}$$

(C) $\frac{a^2 + b^2}{4}$
(D) $\frac{a^2 + b^2 - ab}{3}$

Q.7 The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is

[IIT -2009]

10

(A) $\frac{31}{10}$ (B) $\frac{29}{10}$

ELLIPSE

(C)
$$\frac{21}{10}$$
 (D) $\frac{27}{10}$

Passage : (Q.8 to Q.10)

Tangents are drawn from the point P(3, 4) to the

ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, touching the ellipse at points A and B. [IIT 2010]

Q.8 The coordinates of A and B are (A) (3, 0) and (0, 2) (B) $\left(-\frac{8}{5}, \frac{2\sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$ (C) $\left(-\frac{8}{5}, \frac{2\sqrt{161}}{15}\right)$ and (0, 2)

(D) (3, 0) and
$$\left(-\frac{9}{5}, \frac{8}{5}\right)$$

Q.9 The orthocentre of the triangle PAB is

(A)
$$\left(5,\frac{8}{7}\right)$$
 (B) $\left(\frac{7}{5},\frac{25}{8}\right)$
(C) $\left(\frac{11}{5},\frac{8}{5}\right)$ (D) $\left(\frac{8}{25},\frac{7}{5}\right)$

Q.10 The equation of the locus of the point whose distances from the point P and the line AB are equal, is

(A)
$$9x^2 + y^2 - 6xy - 54x - 62y + 241 = 0$$

(B) $x^2 + 9y^2 + 6xy - 54x + 62y - 241 = 0$
(C) $9x^2 + 9y^2 - 6xy - 54x - 62y - 241 = 0$
(D) $x^2 + y^2 - 2xy + 27x + 31y - 120 = 0$

Q.11 The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle R. The eccentricity of the ellipse E_2 is [IIT Scr. 2012]

(A)
$$\frac{\sqrt{2}}{2}$$
 (B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$ (D) $\frac{3}{4}$

ANSWER KEY

LEVEL-1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	В	С	В	В	Α	В	С	Α	А	В	В	В	В	D	С	В	В	Α
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	В	А	В	Α	В	А	А	А	С	Α	А	А	С	D	С	С	С	D	В	A,B

LEVEL-2

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	А	В	В	В	С	Α	D	С	В	А	В	Α	С	А	С	D	D	С	Α
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	Α	D	А	Α	В	Α	В	В	Α	D	А	A,C,D	В	Α	Α	С	В	С	Α	В

41. (A) \rightarrow R; (B) \rightarrow S; (C) \rightarrow P; (D) \rightarrow T

LEVEL-3

SECTION-A

Qus.	1	2	3	4	5	6	7	8	9	10
Ans.	Α	В	В	D	D	В	A,B	А	С	С

SECTION-B

7.[D]

1.[B] Maximum area =
$$\frac{1}{2}$$
. (2ae) b = abe

2.[C] $PF_1 + PF_2 = Length of major axis$

3.[B] ae = b
$$\Rightarrow$$
 e = $\frac{1}{\sqrt{2}}$

4.[C]
$$c^2 = 4.4^2 + 1 = 65$$

5.[A]
$$\frac{x^2}{2} + \frac{y^2}{1} = 1$$
$$h = \frac{\sqrt{2}}{2\cos\theta}; \Rightarrow \cos\theta = \frac{1}{\sqrt{2}h}$$
$$k = \frac{1}{2\sin\theta} \Rightarrow \sin\theta = \frac{1}{2k}$$
Now required locus is $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$

6.[A] Minimum area =
$$\frac{1}{2}$$
. $\sqrt{2}$ a. $\sqrt{2}$ b = ab

O B(0, 1) M

Equation of AB is $y - 1 = \left(\frac{1-0}{0-3}\right)(x-0)$

$$\Rightarrow$$
 y - 1 = $-\frac{1}{3}$ x

Equation of auxiliary circle is $x^2 + y^2 = 9$

Now
$$x^2 + \left(1 - \frac{1}{3}x\right)^2 = 9$$

$$\Rightarrow x^2 + \frac{x^2 + 9 - 6x}{9} = 9$$

$$\Rightarrow 10x^2 - 6x - 72 = 0$$

$$\Rightarrow 5x^2 - 3x - 36 = 0$$

$$\Rightarrow (x - 3) (5x + 12) = 0$$

Now, area of OAM $= \frac{1}{2} \begin{vmatrix} 3 & -\frac{12}{5} \\ 0 & \frac{9}{5} \end{vmatrix} = \frac{27}{10}$

8.[D] Equation of tangent $y = mx \pm \sqrt{9m^2 + 4}$ It passes through (3, 4) $4 = 3m \pm \sqrt{9m^2 + 4}$ $m = \frac{1}{2}$ and undefined So equation of the tangent will be x - 2y + 5 = 0 and x = 3so point of contacts are (3, 0) and $\left(-\frac{9}{5}, \frac{8}{5}\right)$ 9.[C]

Equation of two altitudes PH and AQ are 3x - y - 5 = 0 and 2x + y - 6 = 0 respectively So orthocenter will be $\left(\frac{11}{5}, \frac{8}{5}\right)$

10.[A] Equation of AB is x + 3y - 3 = 0So required locus will be

$$(x-3)^{2} + (y-4)^{2} = \frac{(x+3y-3)^{2}}{10}$$

9x² + y² - 6xy - 54 x - 62 y + 241 = 0

11.[C]

Let equation of ellipse E_2 is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $\Rightarrow e^2 = \frac{1}{4}$

 $\Rightarrow e = \frac{1}{2}$

it passes through (0, 4) so $b^2 = 16$ and also passes through (3, 2) So $\frac{9}{a^2} + \frac{4}{b^2} = 1$ $\Rightarrow \frac{9}{a^2} + \frac{1}{4} = 1$ $\Rightarrow a^2 = 12$ $\Rightarrow as a < b$ so $12 = 16 (1 - e^2)$